Finding Hidden Patterns in Complex Multivariate Data

Ruben Zamar Deapartment of Statistics UBC

June 27, 2013

Ruben Zamar Deapartment of Statistics

Robust Estimation

June 27, 2013 1 / 72

PART I GROUPING ITEMS THAT SEEM ALIKE

Ruben Zamar Deapartment of Statistics

Robust Estimation

▶ ৰ ≣ ▶ ≣ ৩৫৫ June 27, 2013 2 / 72

• **Taxonomists** pioneered the grouping - or **clustering** - of plants and animals to form species.

- **Taxonomists** pioneered the grouping or **clustering** of plants and animals to form species.
- They needed consistent procedures (across scientists) to assign similar specimens to the same groups.

- **Taxonomists** pioneered the grouping or **clustering** of plants and animals to form species.
- They needed consistent procedures (across scientists) to assign similar specimens to the same groups.
- Initially, clustering was done manually.

- **Taxonomists** pioneered the grouping or **clustering** of plants and animals to form species.
- They needed consistent procedures (across scientists) to assign similar specimens to the same groups.
- Initially, clustering was done manually.
- Taxonomists used measurements (**grouping variables**) to help their task.

DIFFERENT SUBSPECIES OF IRIS PLANTS

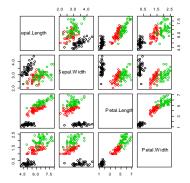
IRIS DATA

ltem	sepal length	sepal width	petal length	petal width
plant 1	5.1	3.5	1.4	0.2
, plant 2 plant 3	4.9	3.0	1.4	0.2
plant 3	5.4	3.9	1.7	0.4
÷	:	÷	÷	÷
plant 150	5.9	3.0	5.1	1.8

э.

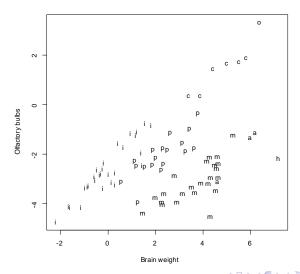
イロン イヨン イヨン イ

FISHER - ANDERSON "IRIS DATA"



Black = Setosa, Green = Virginica, Red = Versicolor

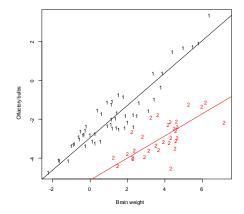
JERISON (1973) "ALLOMETRY DATA"



Ruben Zamar Deapartment of Statistics

Robust Estimation

JERISON (1973) ALLOMETRY DATA



(Insectivores, Carnivores, Horse, Prosimians), (Apes, Monkeys, Human)

 IN STATISTICS AND COMPUTER SCIENCE, CLUSTERING MEANS
 "AUTOMATIC, COMPUTER AIDED, GROUPING OF SIMILAR ITEMS BASED ON SOME SIMILARITY MEASURE".

- IN STATISTICS AND COMPUTER SCIENCE, CLUSTERING MEANS
 "AUTOMATIC, COMPUTER AIDED, GROUPING OF SIMILAR ITEMS BASED ON SOME SIMILARITY MEASURE".
- THE NUMBER OF CLUSTERS (GROUPS) IS UNKNOWN

- IN STATISTICS AND COMPUTER SCIENCE, CLUSTERING MEANS
 "AUTOMATIC, COMPUTER AIDED, GROUPING OF SIMILAR ITEMS BASED ON SOME SIMILARITY MEASURE".
- THE NUMBER OF CLUSTERS (GROUPS) IS UNKNOWN
- THE RELATIVE SIZE OF THE CLUSTERS IS UNKNOWN

- IN STATISTICS AND COMPUTER SCIENCE, CLUSTERING MEANS
 "AUTOMATIC, COMPUTER AIDED, GROUPING OF SIMILAR ITEMS BASED ON SOME SIMILARITY MEASURE".
- THE NUMBER OF CLUSTERS (GROUPS) IS UNKNOWN
- THE RELATIVE SIZE OF THE CLUSTERS IS UNKNOWN
- FINDING ALL OF THAT FROM THE DATA IS A VERY CHALLENGING STATISTICAL PROBLEM.

• TO FIND AND NAME HIDDEN GROUPS OF SIMILAR ITEMS

• TO FIND AND NAME HIDDEN GROUPS OF SIMILAR ITEMS

• TO EXPLAIN AND INTERPRET THE GROUPS

Ruben Zamar Deapartment of Statistics

Robust Estimation

• TO FIND AND NAME HIDDEN GROUPS OF SIMILAR ITEMS

• TO EXPLAIN AND INTERPRET THE GROUPS

• TO SUMMARIZE AND DISPLAY THE GROUPS

Ruben Zamar Deapartment of Statistics

Robust Estimation

SOME EXAMPLES OF CLUSTERING APPLICATIONS

• GROUPING DIFFERENT CANCER TUMORS BASED ON GENE EXPRESSION DATA

SOME EXAMPLES OF CLUSTERING APPLICATIONS

• GROUPING DIFFERENT CANCER TUMORS BASED ON GENE EXPRESSION DATA

• FORMING SOCIAL CLASSES BASED ON SOCIO-ECONOMICAL FEATURES

SOME EXAMPLES OF CLUSTERING APPLICATIONS

• GROUPING DIFFERENT CANCER TUMORS BASED ON GENE EXPRESSION DATA

• FORMING SOCIAL CLASSES BASED ON SOCIO-ECONOMICAL FEATURES

• FINDING SIMILAR TYPES OF CUSTOMERS BASED ON PURCHASING PATTERNS

• d VARIABLES (FEATURES) ARE MEASURED IN n ITEMS

d VARIABLES (FEATURES) ARE MEASURED IN n ITEMS DATA TABLE

ltem	<i>X</i> ₁	<i>X</i> ₂		X _d
1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x _{1d}
2	<i>x</i> ₂₁	<i>x</i> ₂₂	•••	x _{2d}
3	<i>x</i> ₃₁	<i>x</i> ₃₂	•••	X3d
÷	÷	÷		÷
n	<i>x</i> _{n1}	x _{n2}	•••	x _{nd}

d VARIABLES (FEATURES) ARE MEASURED IN n ITEMS DATA TABLE

Item	X_1	X_2	•••	X _d
1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x _{1d}
2	x ₂₁	<i>x</i> ₂₂	• • •	x _{2d}
3	x ₃₁	<i>x</i> ₃₂	•••	X3d
÷	:	÷		÷
n	x_{n1}	x_{n2}		X _{nd}

• FIND PATTERNS IN THE NUMBERS TO IDENTIFY THE GROUPS

• DEVELOP/IMPLEMENT ALGORITHMS TO FIND PATTERNS IN THE OBSERVATIONS

• DEVELOP/IMPLEMENT ALGORITHMS TO FIND PATTERNS IN THE OBSERVATIONS

• IDENTIFY GROUPS OF ITEMS THAT EXHIBIT SIMILAR PATTERNS

Ruben Zamar Deapartment of Statistics

Robust Estimation

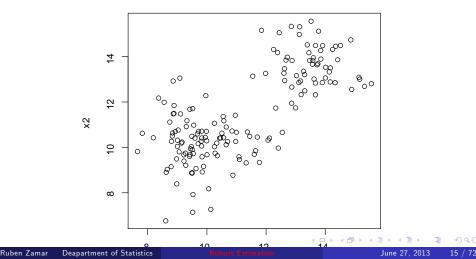
IRIS DATA

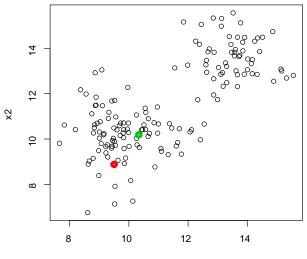
ltem	sepal length	sepal width	petal length	petal width
plant 1	5.1	3.5	1.4	0.2
, plant 2 plant 3	4.9	3.0	1.4	0.2
plant 3	5.4	3.9	1.7	0.4
÷	:	÷	÷	÷
plant 150	5.9	3.0	5.1	1.8

æ

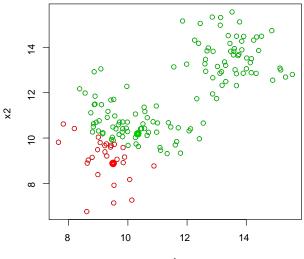
* ロ > * 個 > * 注 > * 注 >

SIMPLE NUMERICAL ILLUSTRATION





э



<ロト < 四

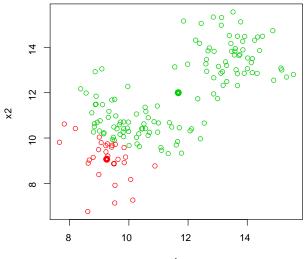
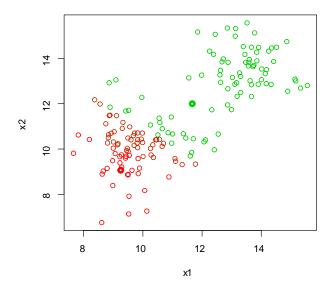


Image: A matrix and a matrix



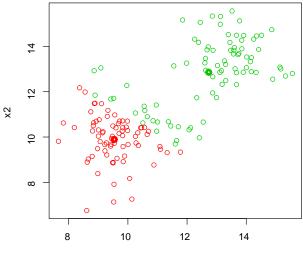


Image: A matrix and a matrix

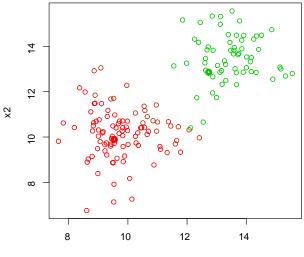


Image: A matrix and a matrix

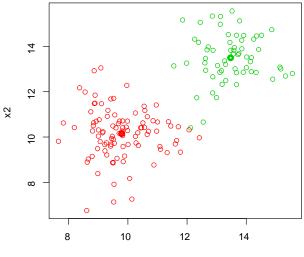


Image: A mathematical states of the state

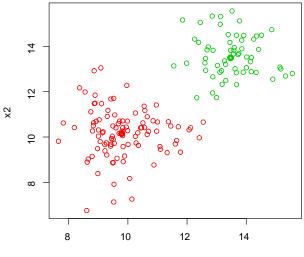


Image: A mathematical states of the state

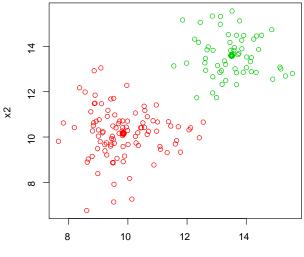


Image: A mathematical states of the state

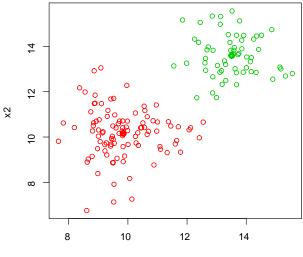


Image: A matrix and a matrix

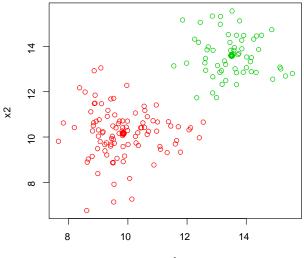


Image: A matrix and a matrix

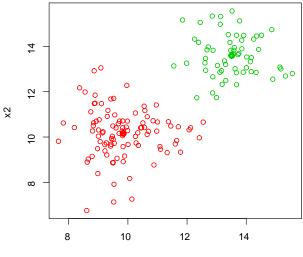


Image: A mathematical states of the state

• CENTROID BASED CLUSTER

• CENTROID BASED CLUSTER

PROBABILITY MODEL BASED CLUSTER

- CENTROID BASED CLUSTER
- PROBABILITY MODEL BASED CLUSTER
- DISTANCE BASED CLUSTER

- CENTROID BASED CLUSTER
- PROBABILITY MODEL BASED CLUSTER
- DISTANCE BASED CLUSTER
- POINT MIGRATING CLUSTER (PEAK HUNTING)

- CENTROID BASED CLUSTER
- PROBABILITY MODEL BASED CLUSTER
- DISTANCE BASED CLUSTER
- POINT MIGRATING CLUSTER (PEAK HUNTING)
- SPARSE CLUSTER

MINIMIZE A LOSS FUNCTION

$$J(\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_k) = \sum_{j=1}^k \sum_{i \in \mathcal{C}_j} \|\mathbf{x}_i - \mathbf{t}_j\|^2, \quad \mathbf{t}_j = \frac{1}{n_k} \sum_{i \in \mathcal{C}_j} \mathbf{x}_i$$

 n_k = number of items in $C_j = \#C_j$

3

MINIMIZE A LOSS FUNCTION

$$J(\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_k) = \sum_{j=1}^k \sum_{i \in \mathcal{C}_j} \|\mathbf{x}_i - \mathbf{t}_j\|^2, \quad \mathbf{t}_j = \frac{1}{n_k} \sum_{i \in \mathcal{C}_j} \mathbf{x}_i$$

$$n_k =$$
 number of items in $\mathcal{C}_j = \# \mathcal{C}_j$

• SIMILAR (IN SPIRIT) TO LS-REGRESSION

MINIMIZE A LOSS FUNCTION

$$J(\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_k) = \sum_{j=1}^k \sum_{i \in \mathcal{C}_j} \|\mathbf{x}_i - \mathbf{t}_j\|^2, \quad \mathbf{t}_j = \frac{1}{n_k} \sum_{i \in \mathcal{C}_j} \mathbf{x}_i$$

$$n_k =$$
 number of items in $\mathcal{C}_j = \# \mathcal{C}_j$

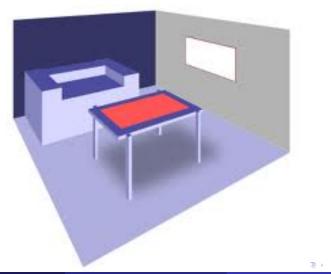
- SIMILAR (IN SPIRIT) TO LS-REGRESSION
- EXAMPLE: PACKAGE kmeans IN R

• LINEAR GROUPING USING ORTHOGONAL REGRESSION

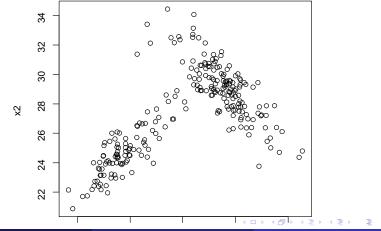
- LINEAR GROUPING USING ORTHOGONAL REGRESSION
- FIND GROUPS OF POINTS CLUSTERED AROUND LINEAR VARIATIES

- LINEAR GROUPING USING ORTHOGONAL REGRESSION
- FIND GROUPS OF POINTS CLUSTERED AROUND LINEAR VARIATIES
- **EXAMPLE:** POINTS CLUSTERED AROUND **CENTROIDS, LINES** AND **PLANES** IN HIGHER DIMENSIONAL SPACES

LINES AND PLANES IN 3 DIMENSIONAL SPACES (COMPUTER VISION)



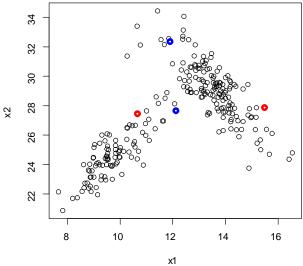
EXAMPLE: CLUSTER OF POINTS AROUND TWO LINES



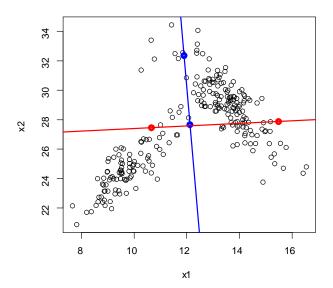
Ruben Zamar Deapartment of Statistics

Robust Estimation

June 27, 2013 32 / 3

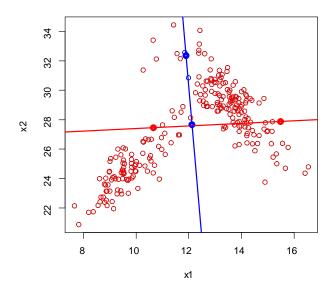


Ruben Zamar Deapartment of Statistics



June 27, 2013 34 / 72

Image: A matrix and a matrix



June 27, 2013 35 / 7

Image: A mathematical states of the state

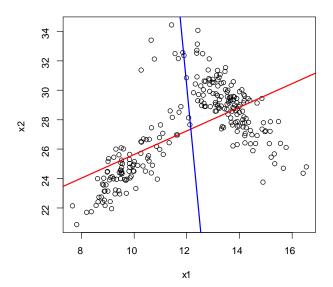
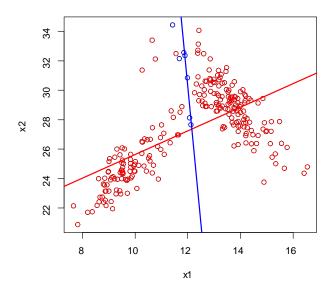
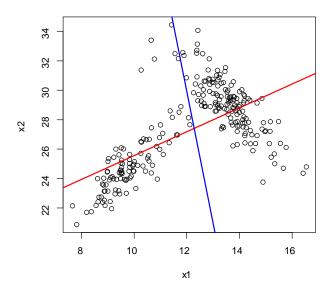
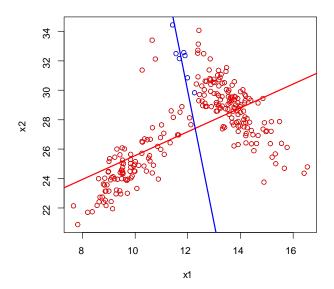
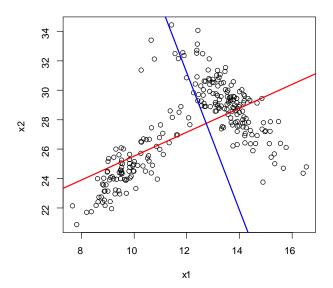


Image: A matrix and a matrix









2

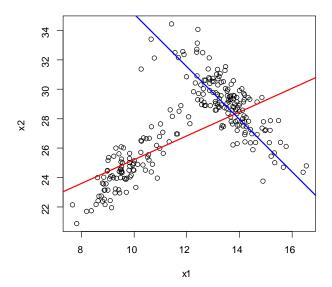
Image: A mathematical states of the state



Ruben Zamar Deapartment of Statistics

2

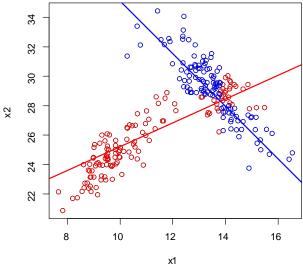
Image: A mathematical states of the state



June 27, 2013 42 / 7

2

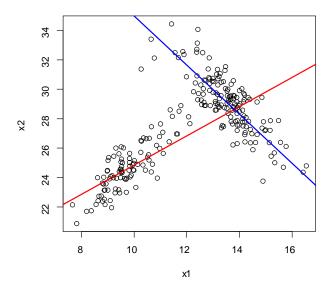
Image: A matrix and a matrix



Ruben Zamar Deapartment of Statistics

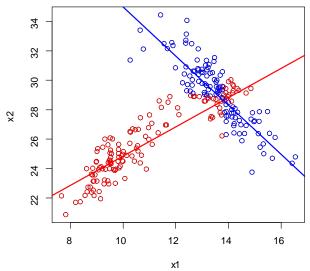
2

Image: A mathematical states of the state

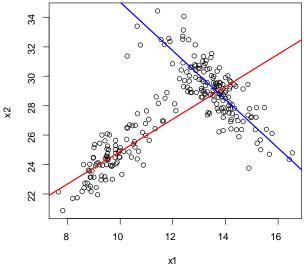


June 27, 2013 44 / 7

Image: A matrix and a matrix

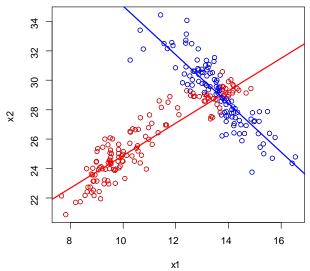


2



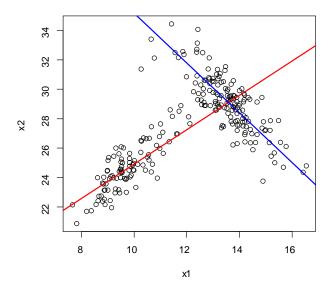
Ruben Zamar Deapartment of Statistics

Image: A matrix and a matrix



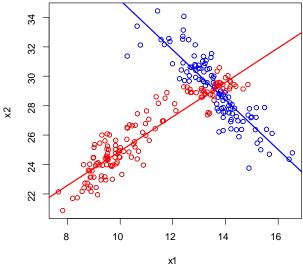
2

Image: A matrix and a matrix

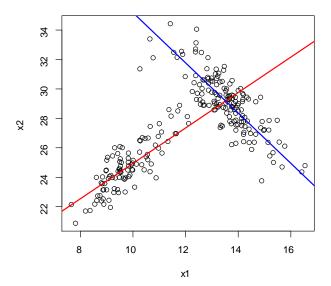


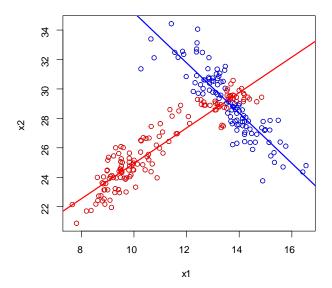
June 27, 2013 48 / 7

Image: A matrix and a matrix



æ





æ

• Garcia-Escudero, Gordaliza, San Martin, Van Aelst, and Zamar(2009) (JRSS)

- Garcia-Escudero, Gordaliza, San Martin, Van Aelst, and Zamar(2009) (JRSS)
 - ROBUST EXTENSION OF LINEAR CLUSTERING USING "IMPARTIAL TRIMMING"

MODEL BASED CLUSTERING

Ruben Zamar Deapartment of Statistics

Robust Estimation

э

MODEL BASED CLUSTERING

$$f(\mathbf{x}) = \prod_{i=1}^{k} [\alpha_i f_i(\mathbf{x})]^{\delta_i}, \quad \delta_i = 0, 1, \quad 0 < \alpha_i < 1$$
$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \delta_i = 1$$

MODEL BASED CLUSTERING

 MODEL THE CLUSTERS USING A "MIXTURE" PROBABILITY DENSITY

$$\begin{split} f\left(\mathbf{x}\right) &= \prod_{i=1}^{k} \left[\alpha_{i} f_{i}\left(\mathbf{x}\right)\right]^{\delta_{i}}, \quad \delta_{i} = 0, 1, \quad 0 < \alpha_{i} < 1 \\ \sum_{i=1}^{k} \alpha_{i} &= \sum_{i=1}^{k} \delta_{i} = 1 \end{split}$$

• MAXIMIZE THE LIKELIHOOD FUNCTION

MODEL BASED CLUSTERING

 MODEL THE CLUSTERS USING A "MIXTURE" PROBABILITY DENSITY

$$f(\mathbf{x}) = \prod_{i=1}^{k} [\alpha_i f_i(\mathbf{x})]^{\delta_i}, \quad \delta_i = 0, 1, \quad 0 < \alpha_i < 1$$
$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \delta_i = 1$$

• MAXIMIZE THE LIKELIHOOD FUNCTION

• EXPECTATION-MINIMIZATION (EM) ALGORITHMS

MODEL BASED CLUSTERING

$$f(\mathbf{x}) = \prod_{i=1}^{k} [\alpha_i f_i(\mathbf{x})]^{\delta_i}, \quad \delta_i = 0, 1, \quad 0 < \alpha_i < 1$$
$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \delta_i = 1$$

- MAXIMIZE THE LIKELIHOOD FUNCTION
 - EXPECTATION-MINIMIZATION (EM) ALGORITHMS
 - EXAMPLE: PACKAGE mclust IN R

MODEL BASED CLUSTERING

$$f(\mathbf{x}) = \prod_{i=1}^{k} [\alpha_i f_i(\mathbf{x})]^{\delta_i}, \quad \delta_i = 0, 1, \quad 0 < \alpha_i < 1$$
$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \delta_i = 1$$

- MAXIMIZE THE LIKELIHOOD FUNCTION
 - EXPECTATION-MINIMIZATION (EM) ALGORITHMS
 - **EXAMPLE:** PACKAGE *mclust* IN R
- Yan, Welch, and Zamar (2010) (CJS)

MODEL BASED CLUSTERING

$$f(\mathbf{x}) = \prod_{i=1}^{k} [\alpha_i f_i(\mathbf{x})]^{\delta_i}, \quad \delta_i = 0, 1, \quad 0 < \alpha_i < 1$$
$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \delta_i = 1$$

- MAXIMIZE THE LIKELIHOOD FUNCTION
 - EXPECTATION-MINIMIZATION (EM) ALGORITHMS
 - **EXAMPLE:** PACKAGE *mclust* IN R
- Yan, Welch, and Zamar (2010) (CJS)
 - MODEL-BASED LINEAR CLUSTERING

• USE THE NOTION OF "DISTANCE" BETWEEN TWO GROUPS OF OBJECTS

• USE THE NOTION OF "DISTANCE" BETWEEN TWO GROUPS OF OBJECTS

• MINIMUM, MAXIMUM OR AVERAGE DISTANCE

- USE THE NOTION OF "DISTANCE" BETWEEN TWO GROUPS OF OBJECTS
 - MINIMUM, MAXIMUM OR AVERAGE DISTANCE
 - AGLOMERATIVE OR DIVISIVE

- USE THE NOTION OF "DISTANCE" BETWEEN TWO GROUPS OF OBJECTS
 - MINIMUM, MAXIMUM OR AVERAGE DISTANCE
 - AGLOMERATIVE OR DIVISIVE
- EXAMPLE PACKAGE hclust IN R

• ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
 - PACKAGE clues IN R

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
 - PACKAGE clues IN R
- Pena, Viladomat, and Zamar (2012). (SADM).

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
 - PACKAGE clues IN R
- Pena, Viladomat, and Zamar (2012). (SADM).
 - NEAREST-NEIGHBORS MEDIAN CLUSTER ALGORITHM

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
 - PACKAGE clues IN R
- Pena, Viladomat, and Zamar (2012). (SADM).
 - NEAREST-NEIGHBORS MEDIAN CLUSTER ALGORITHM
 - IMPROVEMENT OVER clues

- ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE POINTS TOWARD THEM
- Wang, Qiu and Zamar (2007) (CSDA)
 - MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
 - PACKAGE clues IN R
- Pena, Viladomat, and Zamar (2012). (SADM).
 - NEAREST-NEIGHBORS MEDIAN CLUSTER ALGORITHM
 - IMPROVEMENT OVER clues
 - ALGORITHM "ATTACTORS" AVAILABLE FOR MATHLAB

PART II

Ruben Zamar Deapartment of Statistics

Robust Estimation

э.

イロン イヨン イヨン イ

æ

PART II

THE NEEDLE

IN THE HAYSTACK

Ruben Zamar Deapartment of Statistics

Robust Estimation

June 27, 2013 56 / 72

э

• **BIOLOGICAL TARGET:** TO CURE OR PALLIATE A MEDICAL CONDITION

Ruben Zamar Deapartment of Statistics

э

• **BIOLOGICAL TARGET:** TO CURE OR PALLIATE A MEDICAL CONDITION

• EXAMPLES:

GAUCHER'S DISEASE

CHRONIC IMFLAMATION

HIV

LUNG CANCER CELLS

Ruben Zamar Deapartment of Statistics

Robust Estimation

SOME STUDIES BEGIN WITH 3000 TO 5000 "CANDIDATE COMPOUNDS"

-

э

SOME STUDIES BEGIN WITH 3000 TO 5000 "CANDIDATE COMPOUNDS"

• THESE COMPOUNDS ARE EXAMINED IN BIOLOGICAL ASSAYS

- SOME STUDIES BEGIN WITH 3000 TO 5000 "CANDIDATE COMPOUNDS"
- THESE COMPOUNDS ARE EXAMINED IN BIOLOGICAL ASSAYS
- BIOLOGICAL ASSAYS ARE EXPENSIVE AND TIME CONSUMING

• A SMALL FRACTION OF THE CONSIDERED COMPOUNDS ARE ACTIVE (AND DESERVE FURTHER INVESTIGATION)

- A SMALL FRACTION OF THE CONSIDERED COMPOUNDS ARE ACTIVE (AND DESERVE FURTHER INVESTIGATION)
- SEARCHING FOR THE GOLDEN NEEDLE

• A SMALL FRACTION OF THE CONSIDERED COMPOUNDS ARE ACTIVE (AND DESERVE FURTHER INVESTIGATION)

SEARCHING FOR THE GOLDEN NEEDLE

• SOME OR EVEN ALL THE ACTIVE COMPOUNDS MAY BE ULTIMATELY DISCARDED FOR OTHER REASONS SUCH AS UNDEDESIRABLE SIDE EFFECTS.

NUMBER OF COMPOUNDS NUMBER OF ACTIVES FRACTION OF ACTIVES

ASSAY			
AID348	AID362	AID364	AID371
4946	4279	3311	3312
48	60	50	278
0.0097	0.0140	0.0151	0.0839

э

► < Ξ ►</p>

• NEED TO EXAMINE A MUCH LARGER LIST OF COMPOUNDS

NEED TO EXAMINE A MUCH LARGER LIST OF COMPOUNDS IDEA: SORT THE COMPOUNDS SO THAT THE ACTIVE ONES ARE CLOSER TO THE TOP

- NEED TO EXAMINE A MUCH LARGER LIST OF COMPOUNDS
- IDEA: SORT THE COMPOUNDS SO THAT THE ACTIVE ONES ARE CLOSER TO THE TOP
- BRING THE NEEDLES TO THE TOP OF THE LIST!

۲

DESCRIPTOR SET ATOM PAIRS BURDEN NUMBERS CARHART ATOM PAIRS FRAGMENT PAIRS PHARMACOPHORES NUMBER OF VARIABLES

ASSAY					
AID348	AID362	AID364	AID371		
367	360	380	382		
24	24	24	24		
1795	1319	1585	1498		
570	563	580	580		
122	112	120	119		

э

۲

	ASSAY			
DESCRIPTOR SET	AID348	AID362	AID364	AID371
ATOM PAIRS	367	360	380	382
BURDEN NUMBERS	24	24	24	24
CARHART ATOM PAIRS	1795	1319	1585	1498
FRAGMENT PAIRS	570	563	580	580
PHARMACOPHORES	122	112	120	119
NUMBER OF VARIABLES				

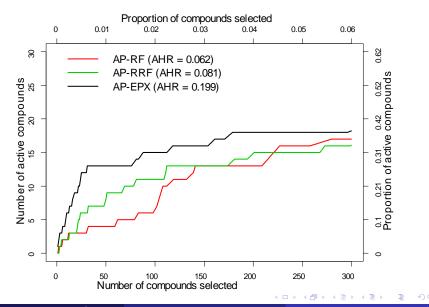
• The descriptor sets are generated by the software PowerMV (Liu, Feng, and Young, 2005).

EVALUATING COMPETING SORTING PROCEDURES

• APPROPRIATE MEASURES FOR THIS EVALUATION WERE DEVELOPED TO THIS END

EVALUATING COMPETING SORTING PROCEDURES

- APPROPRIATE MEASURES FOR THIS EVALUATION WERE DEVELOPED TO THIS END
- I'LL DESCRIBE TWO OF THEM (THE MOST POPULAR ONES)



June 27, 2013 64 / 72

SYMBOL	MEANING
N	NUMBER OF COMPOUNDS IN THE ASSAY
A	NUMBER OF ACTIVE COMPOUNDS
A(t)	NUMBER OF ACTIVES AMONG THE
	FIRST t COMPOUNDS

イロン イヨン イヨン イ

æ

POSITION OF THE ACTIVE COMPOUNDS IN THE SORTED LIST:

$$t_1 < t_2 < t_3 < \cdots < t_A$$

HIT RATES:

$$H\left(t_{j}\right)=\frac{A\left(t_{j}\right)}{t_{j}}$$

AVERAGE HIT RATE

$$\overline{H} = \frac{H(t_1) + H(t_2) + \dots + H(t_A)}{A}$$

• PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)
- CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE SELECTION (REGULARIZATION)

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)
- CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE SELECTION (REGULARIZATION)
 - RIDGE REGRESSION

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)
- CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE SELECTION (REGULARIZATION)
 - RIDGE REGRESSION
 - LASSO

- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)
- CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE SELECTION (REGULARIZATION)
 - RIDGE REGRESSION
 - LASSO
 - LARS

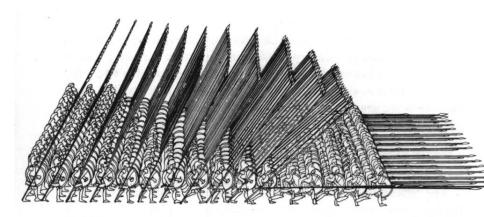
- PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF VARIABLES
 - SOME OF THEM ARE USELESS (PURE NOISE)
 - SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)
- CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE SELECTION (REGULARIZATION)
 - RIDGE REGRESSION
 - LASSO
 - LARS
 - RANDOM FOREST (IT HAS BUILT-IN VARIABLE SELECTION CAPABILITY)

• IDEA: INSTEAD OF SORTING THE COMPOUNDS WITH A SINGLE REGULARIZED MODEL, FORM SEVERAL MODELS (CALLED PHALANXES) AND COMBINE THEM (MODEL AVERAGING)

- IDEA: INSTEAD OF SORTING THE COMPOUNDS WITH A SINGLE REGULARIZED MODEL, FORM SEVERAL MODELS (CALLED PHALANXES) AND COMBINE THEM (MODEL AVERAGING)
- EACH MODEL MUST INCLUDE VARIABLES THAT **WORK WELL TOGETHER**

- IDEA: INSTEAD OF SORTING THE COMPOUNDS WITH A SINGLE REGULARIZED MODEL, FORM SEVERAL MODELS (CALLED PHALANXES) AND COMBINE THEM (MODEL AVERAGING)
- EACH MODEL MUST INCLUDE VARIABLES THAT **WORK WELL TOGETHER**
- THIS RESEMBLES THE ANCIENT MILITARY FORMATIONS USED BY ALEXANDER THE GREAT AND HIS FATHER PHILIPPO II OF MACEDONIA.

MACEDONIAN PHALANX



The Macedonian phalanx, here shown in its fighting formation of 256 men, the syntagma.

• WE CREATED AN ALGORITHM TO SELECT THE PHALANXES AND PRODUCE THE COMBINED SORTING

- WE CREATED AN ALGORITHM TO SELECT THE PHALANXES AND PRODUCE THE COMBINED SORTING
- UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS "INVENTION".

- WE CREATED AN ALGORITHM TO SELECT THE PHALANXES AND PRODUCE THE COMBINED SORTING
- UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS "INVENTION".
- OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE DESCRIBED HERE

- WE CREATED AN ALGORITHM TO SELECT THE PHALANXES AND PRODUCE THE COMBINED SORTING
- UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS "INVENTION".
- OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE DESCRIBED HERE
- PLEASE, REFER TO A FORTHCOMING PAPER (TOMAL, WELCH AND ZAMAR, 2013) AND TOMAL'S Ph.D. DISSERTATION (UBC)

THE TRAINING DATA IS "VARIABLES RICH" AND "OBSERVATIONS POOR"

- THE TRAINING DATA IS "VARIABLES RICH" AND "OBSERVATIONS POOR"
- THERE ARE FEW RARE CASES

- THE TRAINING DATA IS "VARIABLES RICH" AND "OBSERVATIONS POOR"
- THERE ARE FEW RARE CASES
- IN SUMMARY: THE HARDEST THE SORTING PROBLEM IS, THE MOST PHALANX OUTPERFORMS AVAILABLE PROCEDURES

 MODERN HIGH DIMENSIONAL PROBLEMS (E.G. GENOMICS, PROTEOMCS, FINANCE, ASTRONOMY) ARE COMPLEX AND MAY HAVE SEVERAL INTERNAL DRIVING FORCES

- MODERN HIGH DIMENSIONAL PROBLEMS (E.G. GENOMICS, PROTEOMCS, FINANCE, ASTRONOMY) ARE COMPLEX AND MAY HAVE SEVERAL INTERNAL DRIVING FORCES
- PHALANXES ARE CAPABLE OF CAPTURING AND EXPLOITING THIS DIVERSITY

- MODERN HIGH DIMENSIONAL PROBLEMS (E.G. GENOMICS, PROTEOMCS, FINANCE, ASTRONOMY) ARE COMPLEX AND MAY HAVE SEVERAL INTERNAL DRIVING FORCES
- PHALANXES ARE CAPABLE OF CAPTURING AND EXPLOITING THIS DIVERSITY
- INSTEAD OF "CURSING DIMENSIONALITY" PHALANX "BLESSES DIMENSIONALITY".