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Abstract

The construction of special geometric structures using solvable Lie groups is consid-
ered. Starting with a canonical structure on euclidean space, one translates it by using different
Lie groups acting simply transitively. This procedure amounts to work directly at the Lie alge-
bra level. We concentrate on the construction of special geometric structures related to a par-
ticular kind of invariant complex structures on Lie groups: the abelian ones. After an introduc-
tion with some survey results on abelian complex structures we give two applications, namely :
weak hyperkihler with torsion structures on IR* with underlying abelian hypercomplex struc-
ture and hypersymplectic structures on IR* with underlying abelian complex product structure.

Key words: Complex, Structures complexstructures, Hyperkidhler with torsion,
Hypersymplectic.

Resumen

Estructuras abelianas coplejas y geometrias especiales. Se exhiben construccio-
nes de estructuras geométricas especiales usando acciones de grupos de Lie solubles. Comenzan-
do con una estructura canénica en el espacio euclideo, se la traslada usando grupos de Lie dife-
rentes que actian simple y transitivamente en el mismo. Este procedimiento lleva a trabajar di-
rectamente en dlgebras de Lie. Nos concentramos en la construccién de estructuras geométricas
especiales relacionadas con una clase particular de estructuras complejas, las estructuras com-
plejas abelianas. Luego de una introduccién con resultados generales sobre estructuras comple-
jas abelianas presentamos dos aplicaciones: estructuras hyperkéhler con torsién en [R® cuya es-
tructura hipercompleja asociada es abeliana y estructuras hipersimplécticas en |Ré cuya estruc-
tura compleja producto asociada es abeliana.

Palabras clave: Estructuras complejas, Hyperkihler con torsién, Hipersimplécticas.

1. Introduction

In the past years various lines of re-
search in mathematics have appeared related to
special geometric structures that are shared by
certain spaces which appear connected with
physical problems. The picture provided by
hamiltonian dynamics applies to many fields of

Trabajo presentado con motivo de la entrega
del premio "Miguel Herrera" en Matemdtica, el 21 de
noviembre de 2003.

physics due to its rich geometrical structure.
Hamiltonian formalism is based on symplectic
structures and a special and relevant class of
symplectic manifolds are provided by Kihler
manifolds where an extra compatible structure
appears, that of a complex manifold. In relatively
recent years, mathematicians on the one hand
and theoretical or mathematical physicists on
the other became interested in a special kind of
Kébhler structures, those called hyperkéhler, due
to the fact that are Kdhler with respect to three
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complex structures which satisfy the law of
quaternions. These structures are relevant in the
description of (non abelian) monopoles [5], they
bear a close connection with twistors and thus in
particular to interesting classes of integrable sys-
tems [16]. More recently other special geometries
like hyperkéhler with torsion and hyper-symplectic
(also called neutral-hyper-kéhler) arose in a natu-
ral way in theoretical and mathematical physics.
The hyperkahler with torsion structure is related
to the existence of a metric connection having to-
tally skew-symmetric torsion. For example, the
geometry of such connections is present on the tar-
get space of supersymmetric sigma models with the
Wess-Zumino term [26, 37, 38] and, in the super-
gravity theories, on the moduli space of a class of
black holes [29]. Moreover, the geometry of NS-5
brane solutions of type II supergravity theories is
generated by such a connection [43, 44, 42]. On the
other hand hypersymplectic or neutral hyperkéhler
structures have significance in string theory. In
[41], N=2 superstring theory is considered, show-
ing that the critical dimension of such a string is
4 and that the bosonic part of the N=2 theory cor-
responds to self-dual metrics of signature (2,2) (see
also [12] and [34]).

In all the previous special geometries,
which do no not exhaust at all the many situa-
tions exhibiting a rich interplay between math-
ematics and physics, complex structures play a
key role. Important results were obtained of
known manifolds carrying such additional struc-
tures. Some examples are:

e Kguchi-Hanson [21] discovered a com-
plete hyperkéhler metric on the holomorphic co-
tangent bundle of CP!. Its generalization to
higher dimensions is due to Calabi [15].

¢ A coadjoint orbit of a complex Lie
group G¢ is a holomorphic symplectic manifold.
These manifolds in many cases possess natural
hyperkéhler metrics due to the work of Kronhei-
mer [36].

¢ A large class of homogeneous HKT and
QKT manifolds, G/K, using an invariant metric
on G and the canonical connection is exhibited
in [40]. For this a decomposition of the Lie alge-
bra of G is employed, which is most easily des-
cribed in terms of colourings of Dynkin diagrams
of simple Lie algebras. The colourings which give
rise to HKT structures are found by using ex-
tended Dynkin diagrams.

e Compact complex surfaces with neutral
hyperkéhler metrics are biholomorphic to either
complex tori or primary Kodaira surfaces and
both carry non flat neutral hyperkéhler metrics,
by results of Kamada (see [35]). In higher dimen-
sions, hypersymplectic structures on a class of com-

pact quotients of 2-step nilpotent Lie groups were
exhibited in [22] in their search of neutral Calabi-
Yau metrics. Also in [3] hypersymplectic structures
on IR* with complete and not necessarily flat as-
sociated neutral metrics are exhibited.

In most cases the proof is based on the
quotient construction. The quotient construction
has its origins in the Marsden-Weinstein quo-
tient construction in symplectic geometry but it
was generalized to the Kdhler and hyperkihler
setting in [32], quaternionic and quaternionic
Kihler setting in [27], hyperkdhler with torsion
setting in [28] among other situations.

One problem that often appears is to
have an explicit description of the compatible
metrics involved. To know about their complete-
ness or their isometry groups is an important
matter in this field.

In the past ten years approximately we
have been working in the construction of certain
kinds of special structures on manifolds but us-
ing actions of Lie groups (see for example [9],
[17], [20]). We start with the canonical structure
on euclidean space and then translate it by us-
ing different classes of groups acting simply tran-
sitively on it. This procedure amounts to work
directly at the Lie algebra level. In many cases
it is possible to exhibit the metric explicitly [3],
[20] and to decide whether it is complete or not.

Throughout this note we will concen-
trate on the construction of special geometric
structures related to a particular kind of invari-
ant complex structures: the abelian ones. Abelian
complex structures were introduced in [10] (see
also [8], [9] ) in the context of Lie groups carry-
ing many complex structures. A characterization
of two-step nilpotent Lie algebras carrying
abelian hypercomplex structures is given in [7]
and a characterization of Lie algebras carrying
abelian complex structures in terms of affine
algebras appear in [11]. Abelian complex struc-
tures are in a sense complementary to complex
strucures that make Lie groups into complex Lie
groups. To make this last statement precise we
recall that the differential of a (1,0)-form corre-
sponding to an integrable complex structure has
no (0,2)-component; if the complex structure
makes G into a complex Lie group then the
diferential of a (1,0)-form has only (2,0)-compo-
nent and if the complex structure is abelian it
has only (1,1)-component.

The organization of this paper is as fol-
lows. After a first section containing some gen-
eral results on abelian structures, in the follow-
ing sections, we give two applications, namely,
weak hyperkéhler with torsion structures on IR*
with underlying abelian hypercomplex structure
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and hypersymplectic structures on IR® with un-
derlying abelian product structure.

2. Abelian complex structures
A complex structure on a real Lie
algebra ¢ is an endomorphism J of g satisfying

JE = —Id, Jlx, y] - [Jx, y] - [x,Jy] - J[Jx,Jy] = 0,
Vi, y € g. (1

Note that complex Lie algebras are
those for which the endomorphism J satisfies the
stronger condition

JP==1d, Jlxyl=lxdyl, Vr,yes (2)

By a hypercomplex structure we mean a
pair of anticommuting complex structures.
An abelian complex structure on a real

Lie algebra ¢ is an endomorphism of ¢ satisfying

J?= -1, [dx,Jyl=[x,v], VYx,y €y (3)

or equivalently

S=-I, [Jryl=-xdyl, Vx,yey, (@)

By an abelian hypercomplex structure
we mean a pair of anticommuting abelian com-
plex structures. We observe that one can re-
write condition (1) as follows

S, vl =1, JyD) = [Jx, y] + [, Jy] Y2,y € 4. (5)

Thus, it is easily obtained, using (3) and
(4) that abelian complex structures are integra-
ble. Note also that (5) implies that if a complex
structure J satisfies [x, y] — [Jx, Jy] # 0 for some
x,y then the commutator subalgebra has dimen-
sion > 2. In particular,

Proposition 2.1. If s a real Lie algebra with
1-dimensional commutator [ 7 ,7] then every
complex structure on g is abelian (compare with
Proposition 4.1 in [9]).

Given a complex structure J on a Lie
algebra ¢, the endomorphism ¢/ extends to the

complexification 7" = g®lg, glving a splitting
£ = g @y

where

A= XWX X € gl and ¢ = {X + JX: Xegl

are complex Lie subalgebras of 4°. Using (3) one
verifies that abelian complex structures are
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those for which the subalgebras g and g are
abelian, and conversely.

There exist algebraic restrictions to the
existence of abelian complex structures. In [19]
it was proved that a real Lie algebra admitting
an abelian complex structure must be solvable.
Moreover, as a consequence of the next result,
(for a proof see for example [4]).

Proposition 2.2. If gis a Lie algebra which
admits a decomposition =9, ®g with g and
g abelian subalgebras, then g is 2-step solvable
(i.e., ¢' is abelian). One can obtain the following
improvement.

Proposition 2.3. [45] Let g be a real Lie algebra
admitting an abelian complex structure. Then 7
is 2-step solvable.

Proof. If g is a real Lie algebra with an
abelian complex structure then

fc :ym@ym

is a sum of two abelian subalgebras, hence 2-step
solvable. Since (%) = (7)'® the proposition follows.

Example 2.4. The simplest examples of
non abelian Lie algebras carrying abelian com-
plex structures are provided by

i) aff(IR ), the Lie algebra of the affine
motion group of IR(the bidimensional non-
abelian Lie algebra), ¢ff(IR) = spanix, y}, with
bracket [x, y] = x and J given by Jx =y and

ii)IRx %, where & stands for the 2n+1
— dimensional Heisenberg Lie algebra, IR x h =
span {w, z, x,, y, i = 1, ..., n}, with non zero
bracket lx,, y| =z and J given by Jz = w, Jx, =
Ypi=1, .. ,n.

The Lie algebras introduced in i) and ii)
have one dimensional commutator. Moreover,
every Lie algebra with one dimensional commu-
tator is a trivial central extension of one of these
(see Theorem 4.1 in [9]). Hence we have obtained
the following result:

Proposition 2.5. Every even dimensional Lie
algebra with one dimensional commutator carries
an abelian complex structure.

We have seen that Lie algebras carry-
ing abelian complex structures need to be 2-step
solvable with an even dimensional center. We
show below examples of 2-step nilpotent algebras
with even dimensional center which can not
carry abelian complex structures.
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Example 2.6. Two-step, free nilpotent
Lie algebras are defined for each r>1asf, =V
@A*V, V a 4r—-dimensional real vector space and
bracket given by [x, y] =x Ay forx,ye V.Itis
clear that A V' is the center of the nilpotent Lie
algebra. Assume an abelian complex structure J
exists on f. Then, since abelian complex struc-
tures preserve the centre (in particular V and A®
V have to be even dimensional) one has a com-
plex structure on £,/ A* V. Take W a complemen-
tary subspace to A* Vin £, invariant by . Then
[, =W @ A* W with J preserving the decomposi-
tion. In W take {x, Jx, y, Jy} linearly independ-
ent, then [x, y] and [Jx, J/y] are linearly independ-
ent in the center, by the definition of the Lie al-
gebra f.. On the other hand [x,y] = [Jx, Jy] since
J is abelian. Thus no abelian complex structures
exist on two-step, free nilpotent Lie algebras.

We next exhibit a complex structure on
f, which can be easily generalized.

Let J be defined as follows

Je,=e,, Je, =e, ,Je re,)=e, ne,

J(el/\ea)=ez/\e3,J(el/\e‘,‘)ze2 e,
where {e, , e,,e, ,e,k)is a basis of R,

It can be easily checked that J defined
as above is integrable in £, =IR! @ A* R".

Generalizing the notion of complex and
hypercomplex structures one has the following.

Definition 2.7. A Clifford structure of order m,
or a Clifford C_-structure, on a real Lie algebra
7 1s a family {Ja’a:l, P of endomorphisms of 7
satisfying, if 1 <o, B <m,

1. J% =1, JQJB+Jﬂ J =0 (azp)

2. N, cyk=1JxJ yl - J, [Jx,y] -
J, e, J vl -yl =0,x,y € 4 (integrability con-
dition)

3. The subalgebra of End(y) generated
by {/.},_, , has dimension 2.

Note that when m =1 or m = 2, con-
dition 1 in 2.7 automatically implies condition 3.
This is no longer true when m > 3.

Remark. If one of the complex structures
involved in the definition of Clifford structures is
abelian then they are all abelian. The proof of this
statement follows the lines of an analogous result
proved in the hypercomplex case in [19].

The next construction, which appears in
[10] shows that a class of two-step nilpotent Lie
groups supports abelian Clifford structures.

Given ¢ a 2-step nilpotent Lie algebra,
that is [[y,ﬂ]y] =0, set dg =g¢@y. Define the fol-
lowing bracket on dg:

eyl = [0, %), vy, )0 = (x), ] + [x,, v,], 0)

Let J denote the endomorphism of dg
given by J(x, , x,) = (-x,, x,). Clearly J*=-1

Proposition 2.8. If g is two-step nilpotent, then
dg is two-step nilpotent and o/ is integrable. More
generally, for eachm > 1, drg = d(d’”"y) is a 2-step
nilpotent Lie algebra carrying a C -structure.

Next, we define another kind of struc-
ture on a Lie algebra which is analogous to a
complex structure. A product structure on gis
a linear endomorphism E: g — ¢ satisfying E®
=1 (and not equal to + 1 toghether with

EIX)Y] = [EX)Y] + [X,EY] — E[EX,EY]
forall X,Y € ¢4 (6)

Given a product structure E on g, we
have a decomposition g= g ® ¢ into the direct
sum of two linear subspaces, the eigenspaces
associated to E.

The next definition relates complex and
product structures.

Definition 2.9. A complex product structure on
the Lie algebra ¢ is a pair {J, E} of a complex
structure J and a product structure E satisfying
JE = - EdJ.

The condition JE = — EJ implies that
the eigenspaces corresponding to the eigenvalues
+1 and -1 of E have the same dimension.

The endomorphism F = JE satisfies F?=
1, and overall {J,E,F} obey the rules

-JE=E*=F =1, (7)
JE=F, EF=-J, FJ=E,

satisfied by the so-called paraquaternionic
numbers. It is easy to verify that (6) is satisfied
by F in place of E.

We refer to [6] for a thorough study of
complex product structures on Lie algebras.

An almost product structure E on a Lie
algebra ¢ satisfying [Ex, Ey] = — [x,y] for all x, y
€ ¢ will be called abelian. Related to these notions
the following characterization appears in [3].

Proposition 2.10. Let {/,E} be a complex product
structure on the Lie algebra ¢ and let (:7,(g‘,y_) be
the associated double Lie algebra, i.e., A and ya
are the Lie subalgebras of‘y such that E |y’= 1,
Ely; = —1. Then the following assertions are

equivalent:
(i) / is an abelian complex structure.
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(ii) The Lie subalgebras 4 and 4 are
abelian;

(iii) E is an abelian product structure.

If one of the conditions in the proposi-
tion above holds, we will say that the complex
product structure {J,E} is abelian.

3. Hyperkihler structures with torsion

On any hermitian manifold (M, J, g) there
exists a unique connection Vsatisfying Vg = 0,V
= 0 and whose torsion tensor ¢ (X,Y,Z2) = g (X,
T(Y,Z)) is totally skew-symmetric (i.e a three
form). The torsion tensor of this connection is
given by ¢ = -JdJF, where F = g(J.,.) is the
Kihler form for o [23]. The geometry of such a
connection is called by physicists a KT connection;
among mathematicians this connection is known
as the Bismut connection [14].

Let M be a smooth manifold with a hy-
percomplex structure {J},_ ,, and a riemannian
metric g. M is said to be a hyperhermitian mani-
fold if it is hermitian with respect to every J,
1<.58:

A given hyperhermitian manifold
(MAJ ), &) is an HKT (hyperkéhler torsion)
manifold ([37]) if there is a connection ysuch
that

Ve=0, WJ =0,i=123,
cX, Y, Z2) =gX, T(Y,Z)) is a three form. (8)

Such a connection is known as an HKT
connection in physics literature; its geometry is
known as an HKT geometry. HKT structures are
called strong or weak depending on whether the
torsion c is closed or not. Due to the uniqueness
of the Bismut connection, a hyperhermitian
manifold M will admit an HKT connection if and
onlyifd, dJ, F =d,dJ,F,=dJ,dJ,F, (where
F ,i=1,2,3 is the Kéhler form associated to (,
g)) or equivalently if §,(F,—i F,) =0 [30]. If
this connection exists, it is unique [23]. Moreo-
ver, by [39] the associated Lee forms 6, = Jd*
F coincide for i = 1,2,3.

Every 4-dimensional hyperhermitian
manifold is HKT. If the dimension is 8, in [17]
all simply connected nilpotent Lie groups which
carry invariant abelian hypercomplex structures
were obtained. There are three such groups and
they are central extensions of Heisenberg type
Lie groups. We show in [20] that abelian
hypercomplex structures give rise to weak HKT
structures on these groups (more generally on
any Lie group) with respect to any compatible
and invariant riemannian metric. These groups
are diffeomorphic to IR 8. In coordinates G

LG. Dotti. Abelian complex structures and special geometries

Yp5---Y,) the corresponding HKT metrics are gi-
ven by:

\2
g = Sdx? +(dy1 —%(.\'ldxg — xodx) — Xadxy + x4dx3)J +

3 j22dy?,

. ’ 1 o
g = Ydx?+dy} +[(ly2 - E(xldxa — x3dx) + x9dxy + x4dx )] +

9
[ dy; - é (ydoxg — xqdxy — xodacg + xgdy )) +dy3,
; 1 : 2
g3 = Yda? +( dy, - E(xldx'l — xodx) — xadxg + x,,dxa)) +
1 2
(dy.z 5 (31dxg — xadey + xodocy — x4y )J +

2
(dyﬂ —% (3ydoxg — x4y — wadg — x4dis )J +dy;.

These metrics have a transitive nilpotent
group of isometries (hence they are complete) and
they are non isometric to each other.

The 8-dimensional HKT structures
obtained above are associated to abelian hyper-
complex structures. One of the main results in
[20] was to prove that on any 2-step nilpotent
Lie groups all invariant HKT structures arise
this way (see Theorem 3.1). Moreover the cor-
respondence given in [7] between abelian
hypercomplex structures on 2-step nilpotent Lie
groups and subspaces of sp(n), gives a method to
construct infinitely many compact and non com-
pact families of manifolds carrying non isomet-
ric HKT structures. By using this construction,
in Section 4 of [20] it is shown that there exist
non trivial deformations of homogeneous HKT
structures on IR¥, [ > 3. Moreover, for rational
parameters one obtains infinitely many HKT
compact quotients of nilpotent Lie groups by
discrete subgroups. This is in contrast with re-
sults in (13], [31] in the Kihler case.

4. Hypersymplectic structures

A hypersymplectic structure on a 4n-di-
mensional manifold M is given by (J,E,g) where
J, E are endomorphisms of the tangent bundle
of M such that

J?= -1, E?=1, JE=-EJ,

g is a neutral metric (that is, of signature
(2n,2n)) satisfying

8X)Y) = g(JX, JY) = —g(EX, EY)

for all X,Y vector fields on M, and the associated
2-forms

AT
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0,XY) = gJX)Y), o, X)Y)=gEX)Y),
o, (X,Y) = gJEX,Y)

are closed. Manifolds carrying a hypersymplectic
structure have a rich geometry, the neutral metric
is Kahler and Ricci flat and its holonomy group
is contained in sp(2n,I|R) [33]. Moreover, the Levi
Civita connection is flat, when restricted to the
leaves of the canonical foliations associated to the
product structure given by E [2]. Metrics asso-
ciated to a hypersymplectic structure are also
called neutral hyperkihler [35].

The quotient construction proved to be
a powerful method to construct symplectic struc-
tures on manifolds. According to [33] this method
cannot be always applied in the setting of
hypersymplectic structures. In [3] we give a pro-
cedure to construct hypersymplectic structures
on IR* with complete and not necessarily flat as-
sociated neutral metrics. The most important
feature achieved by this procedure is that the
associated neutral metrics obtained will be com-
plete and invariant by a 3-step nilpotent group
of isometries (we note that homogeneity does not
necessarily imply completeness in the pseudorie-
mannian setting.) The degree of nilpotency will
be related to the flatness of the metric since we
will show that the neutral metric is flat if and
only if the group is at most 2-step nilpotent.

The idea behind the construction is to
consider the canonical flat hypersymplectic
structure on IR* and then translate it by using
an appropriate group acting simply and transi-
tively on IR*. This group turns to be a double
Lie group (IR, IR*" x {0} ,{0} x IR*) constructed
from affine data on IR*. This group naturally ap-
pears when one tries to obtain Lie algebras car-
rying abelian hypersymplectic structures. We
will say that a hypersymplectic structure is
abelian when the underlying complex product
structure is abelian. Using Proposition 2.10 in
Section 2 toghether with Theorems 3.4 and 3.5
in [1] one can show that any Lie algebra carry-
ing an abelian hypersymplectic structure is a
double product of two abelian Lie algebras en-
dowed with compatible affine structures and
symplectic forms.

Explicit examples of 3-step nilpotent
Lie groups admitting compact quotients and
carrying invariant complete and non flat
hypersymplectic structures are also given in [3].
The induced metrics on the associated nilma-
nifold are neutral Kihler, complete, non-flat
and Ricci flat.
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