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Abstract

In this work we review some results concerning the asymptotic behaviour for nonlocal
diffusion models of the form u, = J * u —u in the whole R” or in a bounded smooth domain with

Dirichlet or Neumann boundary conditions. In RY we obtain that the long time behaviour of the
solutions is determined by the behaviour of the Fourier transform o of near the origin, which is
linked to the behaviour of ¢/ at infinity. If

:I(Y;) = 1"A‘§lu * o(|§|“) (0O<as 2) , the asymptotic behaviour is the same as the one

for solutions of the evolution given by the /2 fractional power of the Laplacian. In particular when
the nonlocal diffusion is given by a compactly supported kernel the asymptotic behaviour is the
same as the one for the heat equation, which is a local model. Concerning the Dirichlet problem
for the nonlocal model we prove that the asymptotic behaviour is given by an exponential decay to
zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an
eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an expo-
nential convergence to the mean value of the initial condition.

Keywords: Nonlocal diffusion, fractional Laplacian, Dirichlet boundary conditions,
Neumann boundary conditions.
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Resumen

Ecuaciones de difusién no locales. En este trabajo haremos una revisién de algunos
resultados recientes sobre el comportamiento asintético de problemas de difusién no-locales de la

forma u, = J * u — u en todo R 0 en un dominio acotado con condiciones de borde de tipo Dirichlet

o Neumann. En R¥ se obtiene que el comportamiento asintético de las soluciones est4 determinado
por el comportamiento de la transformada de Fourier de o cerca del origen, dicho comportamiento

estd relacionado con el de e cerca de infinito. Si J(§)= 1—A|§lu + O(IEJQ) (0 <0 <2), entonces el

comportamiento asintético es el mismo que el de las soluciones de la evolucién que tiene como
operador la potencia fraccionaria o/2 del Laplaciano. En particular, cuando el operador no local
tiene un nicleo de soporte compacto en comportamiento asintético de las soluciones que es el mismo
que el de las soluciones de la ecuacién del calor, que es un modelo local. En cuanto al problema de
Dirichlet para el operador no local se demuestra que se tiene un decaimiento exponencial a cero
con una tasa dada por un primer autovalor y con un perfil dado por una autofuncién asociada a
este autovalor. Finalmente, también analizamos el problema de Neumann y demostramos la
convergencia al valor medio de la condicién inicial.

Palabras clave: Difusion no local, Laplaciano fraccionario, Condiciones de borde tipo
Dirichlet, Condiciones de borde tipo Neumann.
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Introduection

The aim of this paper is to review some
of the recent results obtained by the author con-
tained in [8], see also [1], [2], [12], [13], [18] and
[19].

We will study the asymptotic behaviour
of solutions of a nonlocal diffusion operator in the
whole B or in a bounded smooth domain with
Dirichlet or Neumann boundary conditions.

First, let us introduce what kind of
nonlocal diffusion problems we will consider. To

this end, let J:R" — R be a nonnegative, radial
function with J. v (r)dr=1.

Nonlocal evolution equations of the form

u(xt)=d « u-—u.(x,t):J.RN of (2= 3w, t)dy —1e(2,2),

u(,0)=uo (x), (1.1)

and variations of it, have been recently widely
used to model diffusion processes, see [3], [4], [5],
[71, [10], [12], [16], (17], [20], [21] and [22]. As
stated in [16], if w(x,?) is thought of as the den-
sity of a single population at the point x at time
t, and J(x — y) is thought of as the probability
distribution of jumping from location y to loca-
tion x, then

(J*u)(x,t)ZTRN o (2~ y)u(y.t)dy

is the rate at which individuals are arriving to
position $x$ from all other places and

—u(x,t)=- IRN J(y—x)u(x,t)dy

is the rate at which they are leaving location x
to travel to all other sites. This consideration, in
the absence of external or internal sources, leads
immediately to the fact that the density u
satisfies equation (1.1).

Equation (1.1), is called nonlocal diffu-
sion equation since the diffusion of the density u
at a point x and time t does not only depend on
u(x,t), but on all the values of u in a neighborhood
of x through the convolution term J*u. This equa-
tion shares many properties with the classical
heat equation, «, = cu_, such as: bounded station-
ary solutions are constant, a maximum principle
holds for both of them and, even if J is compactly
supported, perturbations propagate with infinite
speed, [16]. However, there is no regularizing ef-
fect in general. For instance, if J is rapidly decay-
ing (or compactly supported) the singularity of
the source solution, that is a solution of (1.1) with
initial condition a delta measure, ©, = §,, remains

with an exponential decay. In fact, this funda-
mental solution can be decomposed as w(x, ) =
e*d +u(x, t) where v(x,t) is smooth. In this way
we see that there is no regularizing effect since
the solution u of (1.1) can be written as u = w =
u, = e*u, + v * u, with v smooth, which means
that u(t) is as regular as u_0 is, and no more.

Let us also mention in passing that our
results have a probabilistic counterpart in the
setting of Markov chains.

Main results

Let us now state our results concerning
the asymptotic behaviour for equation (1.1), for
the Cauchy, Dirichlet and Neumann problems.

- The Cauchy problem - We will under-
stand a solution of (1.1) as a function

ue C°([0, +=); I* (RV)) that verifies (1.1) in the
integral sense.

Our first result states that the decay rate
as t goes to infinity of solutions of this nonlocal
problem is determined by the behaviour of the
Fourier transform of J near the origin. The as-
ymptotic decays are the same as the ones that
hold for solutions of the evolution problem with
right hand side given by a power of the Laplacian.

In the sequel we denote by f the Fourier
transform of f. Let us recall our hypothesis on the
kernel J that we will assume throughout this
paper,

[(H)]JE C(IRN,]R) is a nonnegative, ra-

dial function with

-‘-n"’ Jirydr=1

This means that J is a radial density
probability which implies obviously that ‘J’ (§)| <1
with J(0)=1, and we shall assume that J hasan
expansion of the form J (£)=1- Ag]* + o([E_,i“) for
£ —>0(A>0). Remark that in this case, (H) im-

plies also that 0 < ¢ <2 and o # 1 if J has a first
momentum.

Theorem I. Lei u be a solution of (1.1)
with initial condition such that

wo, e L} (IRN)
If there exist A>0 and 0 < o <2 such that
J(&)=1- AR +o(g"). €0,

then the asymptotic behaviour of u(x,t) ts given by

- 66 -



,l_iﬁl,,twm mfx|u(x.t)—v(x,t)| =0,

where v is the solution of
o/2
ve(x,8)=—A(-A) v(x,t)

with initial condition v(x,0) = u_O(z). Moreover,
we have

“u ("l ]JL (RN} <C t'N/“,

and the asymptotic profile is given by

lim max|t "Ny (yt’/“,t)— Jlo] 2 GA(y)‘ =0,

t—yto
where G_A (y) satisfies
(‘;A €)= oAl

In the special case a = 2, the decay rate
is t~{-N/2} and the asymptotic profile is a
gaussian

Ga (v)=(4nA)" " exp -4y /4).

Note that in this case (that occurs, for
example, when J is compactly supported) the as-
ymptotic behaviour is the same as the one for
solutions of the heat equation and, as happens for
the heat equation, the asymptotic profile is a
gaussian.

The decay in L~ of the solutions together
with the conservation of mass give the decay of
the L”-norms by interpolation. As a consequence
of Theorem I, we find that this decay is analogous
to the decay of the evolution given by the frac-
tional Laplacian, that is,

= {&;(1,1
ey SC ?)

J.2)

we refer to [11] for the decay of the L? -norms for
the fractional laplacian, see also [14] and [15] for
finer decay estimates of L” -norms for solutions
of the heat equation.

Next we consider a bounded smooth do-
main Q c RV and impose boundary conditions to
our model.

- The Dirichlet problem - We consider the
problem

uy (x,t):jw«J(x—y)n (y.0)dy-u(xt).xeQ,t>0,
u(x,t)=0 xeQ,1>0,
u(x,0)=u (x), xe Q.

(1.3)

d. D. Rossi. Nonlocal diffusion equations

In this model we have that diffusion

takes place in the whole R"but we impose that
u vanishes outside Q. This is the analogous of
what is called Dirichlet boundary conditions for
the heat equation. However, the boundary data
is not understood in the usual sense. As for the
Cauchy problem we understand solutions in an
integral sense.

In this case we find an exponential de-
cay given by the first eigenvalue of an associated
problem and the asymptotic behaviour of solu-
tions is described by the unique (up to a constant)
associated eigenfunction.

Let A1=21(Q) be given by

A= inf %IR”fna"J(x—y)(u(a;)—u(y))zdxdy
i (@) Ta (u(e)) &=

and ¢, an associated eigenfunction (a function
where the infimum is attained).

Theorem II. For every
1o € r (.Q)
there exists a unique solution u of (1.3) such that
ue C‘([G,oc);Ll(Q))
Moreover, if
uge L2 (@)

solutions decay to zero as t — e with an
exponential rate

||”("t)||y(n) = "“‘J]rf(g)e—w'

If w_0 is continuous, positive and
bounded then there exist positive constants C and
C™* such that

Jee(: ")";:"(n) SCe™.
and

lim max
f—pes  x

oMy (x,l,)-C"Qll (x)i =0.

- The Neumann problem - Let us turn
our attention to Neumann boundary conditions.
We study

ut(x,t)=J'QJ(x—y)(u(y,t)—u(x,t))dy, xeQ,i>0
u(x,0)=u (x), ze Q.

(1.8)
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Again solutions are to be understood in
an integral sense. In this model we have that the
integral terms take into account the diffusion
inside Q In fact, as we have explained the inte-
gral part of the equation takes into account the
individuals arriving or leaving position x from
other places. Since we are integrating in Q, we
are imposing that diffusion takes place only in Q.
The individuals may not enter nor leave the do-
main Q. This is the analogous of what is called
homogeneous Neumann boundary conditions in
the literature.

Again in this case we find that the as-
ymptotic behaviour is given by an exponential
decay determined by an eigenvalue problem. Let
f3,be given by

talad(x ~y)(u(y)—u.(x))2 dx dy
I5 (u (x))2 dx

s
uel}(Q)),u=0

Concerning the asymptotic behaviour of
solutions of (1.8) our last result reads as follows:

Theorem III. For every
uge I} Q)
there exists a unique solution u of (1.8) such that
ue C([O,oo); Ve, (Q))

This solution preserves the total mass in

Jqu (¥,t)dy = [quo (v)dy.

Moreover, let

=
¢=rdelo
=

be the mean value of the initial condition, then the
asymptotic behaviour of solutions of (1.8) is
described as follows: if
uge I? Q)
then
-Bit
.00l <™ o 0l

and if u_0 is continuous and bounded there exist
a posttive constant C such that

oty S G

Comments

We will now devote some lines to com-
ment on our results from the qualitative view-
point, in order to give a clearer picture of the situ-
ation.

- Absence of regularization - As was said
above, there is clearly NO regularizing effect,
since the fundamental solution takes the form:

w(x,t)=e"8 (%) +v(x,t).

The function v has no point singularity
at x=0. Moreover, if

JeI (RN)
then
ve C""(IRlem)

This phenomenon is in sharp contrast
with what happens for the heat equation, for
which an initial condition like § is automatically
regularized and the corresponding solution is C=.

One could think that this situation is
in some sense close to what happens in the
subcritical fast-diffusion case: u, = A(x™), with 0
<m < (N - 2),/N. Indeed, it is proved in [6] that
the solution with initial data u, = §; has a per-
manent singularity for all positive times, u(x, t)
= J,(x) ® 1(t) which means that there is no dif-
fusion at all for this special data.

But in fact, the nonlocal equation (1.1)
is a little bit more interesting since some mass
transfer occurs. Although the Dirac delta remains
at x=0, its mass decays exponentially fast. Thus,
total conservation of mass implies that this mass
is redistributed in all the surrounding space,
through the function v(x , t).

This may be seen as a radiation phenom-
ena, which is a feature shared by the fast diffu-
sion equation in the case (N - 2) /N < m < 1.
When considering strong singularities of the kind
o - § (see [9]), there is an explicit solution which

reads
1
1-m
u(x,t)= %
ol

Such a solution has also a standing sin-
gularity at x=0, but nevertheless radiation oc-
curs. The only difference is that, in the fast dif-
fusion situation, the singularity has an infinite
mass, and the amount of mass spread into the
surrounding space will eventually lead to w(x , £)
— + o as ¢ — oo everywhere.
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- Influence of the behaviour of J- Let us
first notice that in the Cauchy problem, if J is

compactly supported in R™, then it has a second

momentum, IR~lx[2J(x)dx<+oo, and since by

symmetry the first momentum of J is null, we
necessarily have

- 2 2
JE)=1-clff +o(lg?).  £-0,
which implies an asymptotic behaviour of heat
equation type, which is quite surprising since the
Heat Equation is a local equation.

The same happens even if J is not com-
pactly supported, but decreases sufficiently fast
at infinity (roughly speaking, faster than
'xl—(mz) ). A well-known example is provided by

the Gaussian law, namely in 1-D,
I(x)=e™, JE)=e™ =1-[g+o(g), £-o0.

In general, J may not have a second
momentum, so that more general expansions may
occur:

J(&)=1-clg* +o(jg")
with a € (0, 2], like it is the case for stable laws
of index o (see [D], p.149). A typical example (in
1-D) is the Cauchy Law,
1
1+jxf’

J(x)= where J(§)=1—|§|+o(]§]),§—>0.
Note that this example provides a J that
does not have a first momentum but has never-

theless an expansion of the form j(§)= 1-g+

o([¢]) - In these cases, we obtain that the asymp-

totic behaviour is given by the non-local frac-
tional Laplace parabolic equation.

But more diffusions may be considered
like for instance the case when

J(E)~1-EInE as &—0.

This last case is really interesting since
it can be shown that the asymptotic behaviour is
still given by a solution of the Heat Equation, yet
viewed in a different time scale. More precisely,

if J is as above and v is the solution of the Heat
Equation v,= (1/2)Av with the same initial datum,
then

N/2

tl_x)x&(t In¢) mfxlu(x,t)—v(x,tlnt)! =0.

d. D. Rossi. Nonlocal diffusion equations

- On the diffusive effect of the equation -

In the case when J has a moment of order 2, then
& 2 :
JI(8)=1-Aff +o(’)

where A is defined as follows:
=D (0)=( -2 27 (x)dx ld=A-1a.
2 2N

Since the first moment of J is null, its
second moment measures the dispersion of J
around its mean, which is zero. Now, the asymp-
totic behaviour of solutions to (1.1) is related to
those of the heat equation with speed c=A" {1/
2}. This means that the more dispersed J is, the
greater the speed.

This effect can be understood as follows:
if J is not dispersed, then almost no diffusion oc-
curs since J*u ~ u, the limit case being J = 8, for
which the equation becomes: u, = S, *u-u=0.

Thus for concentrated J’s, the diffusion
effect is very small, which is also visible in the
asymptotic behaviou) since the speed of the
Gaussian profile is also small.

On the contrary, when J is very dis-
persed, (J*u)(x_0,t) will take into accounts values
of the density u situated at points “far” from x 0
so that a great diffusion effect occurs. This is re-
flected in the asymptotic Gaussian profile which
has a great velocity.

- The frequency viewpoint - A simple
way to understand our results in the Cauchy
problem is the following: the asymptotic behav-
iour that we have found means that at low fre-
quencies (§ ~ 0), the operator is very much like
the fractional Laplacian (usual Laplacian if o =
2). Now, as time evolves, diffusion occurs and
high frequencies of the initial data go to zero, this
si reflected in the explicit frequency solution:

a(g,t)= eiJ(i)—l)tﬁo ©)-

Indeed, if J is a L™ 1 function, then it
happens that J(£)—0 as £— e, so that for

[&/>>1, the high frequencies of u_0 are multiplied

by something decreasing exponentially fast in time
(this could be different in the case when J is a
measure, but we do not consider such a case here).

Thus, roughly speaking, only low fre-
quencies of the solution will play an important
role in the asymptotic behaviour as ¢ — e, which
explains why we obtain something similar to the
fractional Laplacian equation (or heat equation)
in the rescaled limit.
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And in fact what it is done to prove
Theorem I in [8] is precisely to separate the low
frequencies where we use the expansion from the
high frequencies that we control since they tend
to zero fast enough in a suitable time scale.

- Asymptotics in bounded domains - In
the case of bounded domains, the asymptotic be-
haviour of solutions is NOT related to the behav-

iour of ¢ near zero. Indeed, this case is similar
to the case when J is compactly supported, since
the operator will not take into account values of

u at |x|=+ee . The asymptotic behaviour thus de-
pends only on the eigenvalues of the operator
(whether in Dirichlet or Neumann problems).
However, if the domain is unbounded the behav-
iour of J at infinity may enter into play.

Possible extensions

Now we briefly comment on some possi-
ble extensions of our results.

1) First, concerning the Cauchy problem,
one can study the behaviour of the solutions when

the asymptotic expansion of J near the origin is

not of the form (&)= 1*A|§|a +0(|§|a)

2) An interesting problem to look at is
to study diffusions given by kernels that depend
on x and y and not only on x-y. In this case our
results do not apply since the use of the Fourier
transform was the key of our arguments. Also, let
us remark that our proofs strongly rely on hy-
pothesis (H). It is interesting to known up to
what extend (H) is necessary.

3) Another interesting problem is to look
at the Dirichlet or Neumann problems in unbounded
domains, for example in a half-space. In this case it
is not clear what the asymptotic behaviour should be.

4) Finally, one may try to analyze dis-
crete in space versions of these problems (like the
ones considered in [4]) and see if they behave as
their continuous counterpart. We believe that this
is an interesting issue in order to develop numeri-
cal approximations for these problems.

Acknowledgements

Partially supported by UBA X066,
CONICET and ANPCyT PICT N° 05009.

The author want to thank M. Chaves,
E. Chasseigne, L. Ignat , F. Andreu, J Mazon and
dJ. Toledo for several interesting discussions.

Part of this work was done during a visit
of the author to Universidad Autonoma de Madrid
and to Univertitat de Valencia, Spain, he wants to
thank for the warm hospitality found there.

References

[1] F. Andreu,d. M. Mazon, J. D. Rossi and J. Toledo.
Preprint.

[2] F. Andreu, . M. Mazon, J. D. Rossi and J. Toledo.
Preprint.

[38] P. Bates and A. Chmaj. J. Statistical Phys., 95,
1119-1139, (1999).

[4] P. Bates and A. Chmaj. Arch. Rat. Mech. Anal.,
150, 281-305, (1999).

[5] P. Bates, P. Fife, X. Ren and X. Wang. Arch. Rat.
Mech. Anal., 138, 105-136, (1997).

[6] H. Brezis and A. Friedman. J. Math. Pures Appl.,
62, 73-97, (1983).

[7] C. Carrillo and P. Fife. J. Math. Biol. 50(2), 161-
188, (2005).

[8] E. Chasseigne, M. Chaves and J. D. Rossi. Journal
de Mathématiques Pures et Appliquées. 86, 271-291,
(2006).

[9] E. Chasseigne and J. L.Vazquez. Arch. Ration.
Mech. Anal., 164(2), 133-187, (2002).

[10] X Chen. Adv. Differential Equations, 2, 125-160,
(1997).

[11] A. Cérdoba and D. Cérdoba.
Phys., 249, 511-528, (2004).

[12] C. Cortazar, M. Elgueta, J.D. Rossi and N. Wolanski.
o, Differential Equations, 234, 360-390, (2007).

[13] C. Cortazar, M. Elgueta, J. D. Rossi and N.
Wolanski. To appear in Archive for Rational
Mechanics and Analysis.

[14] J. Duoandikoetxea and E. Zuazua. C. R. Acad. Sci.
Paris S’er. I Math., 315(6), 693-698, (1992).

[15] M. Escobedo and E. Zuazua. J. Funct. Anal.,
100(1), 119-161, (1991).

[16] P. Fife. Trends in nonlinear analysis, 153-191,
Springer, Berlin, 2003.

[17] P. Fife and X. Wang. Adv. Differential Equations
3(1), 85-110, (1998).

[18] L. L. Ignat and J. D. Rossi. To appear in Zeitschrift
fur Angewandte Mathematik und Physik.

[19] L. I Ignat and J. D. Rossi. Preprint.

[20] L. Silvestre. Indiana Univ. Math. J. 55(3),
1155{1174, (2006).

[21] X. Wang. ¢J. Differential Equations, 183, 434-461,
(2002).

[22] L. Zhang. J. Differential Equations 197(1), 162-196,
(2004).

Commun. Math.

Manuscrito recibido el 6 de agosto de 2007.
Aceptado el 10 de octubre de 2007.

-70 -



