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1. INTRODUCTION

We will begin by distinguishing four types
of problems. I define a problem as a doubt-
ful or difficult question to which there may
be a number of possible answers. Each pos-
sible answer is a conjecture which has to be
evaluated in a decision procedure.

Type 1 Where all of the consequences of
adopting a conjectural solution are
known: single decision maker with a
single objective i.e. non-chaotic de-
terminism.

Type 2 Where all of the consequences of
adopting a conjectural solution have
been precisely identified but only the
probabilities of occurrence are
known: decision theory.

Type 3 Where all of the consequences of
adopting a conjectural solution have
been approximately identified so
that the possibilities of ill defined or
fuzzy consequences are known: ex-
tension of type 2 with fuzziness of
definition.

Type 4 Where only some of the conse-
quences {precise or fuzzy) of adopt-
ing a conjectural solution have been
identified: real world open problems
with incompleteness.

Conferencia pronunciada durante su incorporacién
como Académico Correspondiente en Bristol, Inglate-
rra, el dia 6 de septiembre de 1991.

Type 1 problems are the traditional deter-
ministic models of engineering science. The
adequacy of these models has always de-
pended cn the relationship between the
model and reality. Under well defined cir-
cumstances, such as the deflection of a sim-
ple steel beam on knife edge support with
an applied point load, they can give depen-
dable answers. When used to model practi-
cal circumstanees the results have to be
treated with caution so that the answers are
on the safe side. However, such calculations
have been the basis of the successful appli-
cation of engineering science for the past
150 years. The recent developments in de-
terministic chaos have demonstrated that
the behaviour of some non-linear determin-
istic systems can be very complex.

Type 2 problems are the traditional ap-
plications of probability theory to closed
world problems. In other words the sample
space is closed; all conjectures have been
identified and the only significant question
is which one to choose. in decision theory
this can be done by choosing the alternative
with maximum expected utility. The impor-
tant point is that no possibilities outside
those identified are considered; it is there-
fore dependent on the ability of the decision
maker to imagine all of them. The final
probability figures are then relative meas-
ures in comparison with the total set. In a
closed world all things are either true or
falge; there is no room for any other state
such as don’t know.

Type 3 problems are equivalent to type 2
problems but with ill defined, imprecise or
fuzzy state descriptions. The theory of fuzzy
sets has allowed a formalization of this state
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description. Thus it is now possible to talk
in ferms of probabilities of fuzzy events
{probability of a man being tall) and of fuzzy
probabilities (a high probability). In fact
that formalization brings its own problems
which I will discuss later.

Type 4 problems are real open world prob-
lems where some things may be true, some
may be false and some unknown. The cen-
tral point here is that any measure of the
evidence in favour of an alternative must be
quite separate from the evidence against
that same proposition.

2. Probability Theory

The Kolmogarov axioms of probability
theory are well known, For a set 6= {e, 9,
B, s 6.}, the probability function P is de-

3 -
fined over the power set E so that:

P:E—->1[0,1]
must satisfy, for each A, B contained in 6
D<=P(A)<=1

Po)=0,P@=1
PAUBR)=PA+PBIfPANB =0

and so the closed world assumption is
PA+P(-A=1

Nowl<=PANB)<=min (P{A), P
(B)

© We define o such that P (A n B) = 6 min
(P (A), P (B)

and ¢ is the degree of dependence between
A and B. Thus

¢ = 0 indicates that A and B are mutually
exclusive and

o = 1 indicates that AcBor Bc A

The parameter ¢ models the dependency
relationship between A and B, knowing ¢ is
equivalent to knowing
PAnB)orP(A/B)

Different models have been described
(Cui, Blockiey 1990) and are '

1} Minimum Dependence

o=max (0, P(A)+PB)-1)/
{min (P (A), P (BY)

therefore
PAnB)=max (0, PA)+PB)-1

P(AU B) = min (1, P (A) + P (B))

2) Independence
o =max (P (A), P (B)
therefore P (A A B) = P (A). P (B)
P(AUB) =P (A)+P(B)-P(A), P (B)

and this corresponds to the case of
maximum entropy.

3) Maximum Dependence
ag=1
P (A n B) = min (P (A), P (B))
P (A U B) = max (P (A), P (B))

These operations correspond with those of
fuzzy sets.

3. Fuzziness

The concept of fuzziness is important
since it is obvious that in real problem solv-
ing there is a need to deal with concepts
which cannot or need not be defined pre-
cisely in order to solve the problem in ques-
tion.

The theory of fuzzy sets was extremely
important to me in the development of my
own thinking since it enabled an escape
from the straight jacket of classical probabil-
ity theory. It helped me to see that it is pos-
sible to think about uncertainty differently.

The distinction between fuzziness and
probability theory can be drawn in two
ways, conceptually and mathematically. The
conceptual distinction has been drawn
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above. The mathematical distinction is that
the membership function of fuzzy sets is a
mapping from the sample space to the range
(0, 1) whereas the probability function ag
defined above is a mapping from the power
set to the range (0, 1).

A fuzzy relation between two sets is a set
of points defined on the Cartesian product.
The membership values of each of these
points may again be interpreted as restric-
tions on the possible strength of the relation-
ship to allow for imprecision of definition. This
is a generalization to a many to many map-
ping of the normal functional expression y =
g (x) which is a one to one or many to one
mapping.

4. Interval Probability Theory

An interval nuniber L is a pair of real num-
bers defining a closed interval [a, b]. In set
notation

I={x| a<=x<=b}=la,bl

An interval variable X i3 a variable whose

value is an interval number. A function of X
[a, b] is

Y = { min (f (a), f (b)), max (f (a), f (b))]
In interval prebability theery an interval
variable is used to represent probability
theory, so that
P(A) =[5 (A), 5 (A)]

where S_(A) is the lower bound and S (A)
is the upper bound of the probability P (A).

The negation is
P=AY=[1-5 (A),1-5 (A}
If we interpret probability as a measure
of belief, then

S, (A) represents the exten{ to which it
is certainly believed that A is true,

1-8, (A) =8, (= A)

represents the extent to which it is certainly
believed that A is false and the value

S, (A) - 8, (A)

represents the extent of the uncertainty of
belief of whether A is true or false.

The three extremes of [0, 0], (1, 1], [0, 1]
therefore represent the cases of ‘certainly
false’, ‘certainly true’, and ‘don’t know’ or
‘unknown’. Thus as described above interval
probahility theory is an open world model
since any constraints on the value of P (A)
from evidence in favour of A are quite sepa-
rate from those constraints from evidence
against A.

Cui and Blockley (1990) have provided
details of the calculus for interval probabil-
ity theory. Operations similar to those de-
fined above involving the degree of depend-
ence have been given. In this case the de-
gree of dependence is an interval number.
In the case when this dependence is ‘un-
known’ then

o= [0, 1]
PAnB)=10,(8 (A)AS (B)]

P(AUB)=[S,(AUB),S, (AU B))

where S (AUB)=S (A VS (B)
SpAUB=(1A (Sp (A) + Sp (BN

It was also shown that if one assumes
that, in some sense the measures of
Baldwin’s support logic (Baldwin 1986) and
the Dempster - Shafer theory of evidence
(Shafer 1976) are equivalent, then the
bounds from interval probability theory for
union are wider than those of support logic
which in turn are wider than those of the
Dempster - Shafer theory.

5. Fuzziness and Probability

Engineers are familiar with the idea that
physical systems can be modelled in vari-
ous ways. Part of an engineers technical ca-
pability has to be able to choose appropri-
ate theoretical models. It is perhaps surpris-
ing therefore that it has been widely held
that uncertainties and degrees of belief
about those uncertainties can only bée mod-
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elled in one way i.e. using Bayesian prob-
ahility theory. Probability theory and the
theory of fuzzy sets are two special cases of
the more general results given earlier.

Fuzzy set theory was, of course, designed
to handle cases where sets do not have
sharp boundaries. There seem to be three
problems with the theory of fuzzy sets.

Firstly, the philosophical problem is that
in order to define a fuzzy set one needs to
use numbers to define the membership val-
ues, or the indicator functions, which them-
selves have to be defined in terms of set
theory. Thus the definition of a crisp set is
required for the definition of number and
the distinction between the sample space
and the power set is all that is left.

The second problem is concerned entirely
with that distinction, Fuzzy sets are defined
in terms of measures which themselves have
be defined. For example the concept of a tall
man has to be defined in terms of numbers
of metres. The definition of a sample space
depends on the nature of the problem to be
solved. We can adopt a systems approach
and think of all concepts as ‘holons’ in a hi-
erarchical system of various levels of preci-
sion of definition. If we look upwards to-
wards the infinite vapue unity of the uni-
verse then any concept is a part, and look-
ing downwards to the precise infinitesimals
of the universe any concept is a whole. The
sample space represents a choice of holons
which are appropriate for the problem at
hand. In problems where the sample space
consists, for all practical purposes of mutu-
ally exclusive, non-interactive concepts, then
classical probability theory is sufficient.
However, when it is difficult to choose a
sample space with these characteristics then
estimates of inter-dependence have to be
obtained. In a sense fuzzy set theory is an
attempt to change the level of definition (in
fact to artificially induce vagueness) in or-
der to enable more efficient problem solv-
ing. There seems therefore to be little point
in arbitrarily choosing to define the mean-
ing of a fuzzy definition in terms of lower
level concepts using another functional
mapping; why use two functions instead of
one?

The third problem is the nature of the cal-
culus of the theories. As shown earlier a gen-
eral treatment of probability theory shows
that the max, min calculus of fuzzy set theory
is at one end of a range of possible results,

For the purpose of practical computation,
the interval probability theory as a measure
on concepts arranged in a hierarchical struc-
tured knowledge base, is a simple open
world of concepts which are more or less
precisely defined. At high levels in a knowl-
edge base, concepts will be vague and will
therefore tend to attract high levels of evi-
dential support, but at the expense of infor-
mation content. At low levels the concepts
will be precise and therefore of high infor-
mation content, but with consequently lower
levels of support. ‘

6. Conclusions

1. Four types of problems have heen iden-
tified, deterministic, probabilistic, probabi-
listic with fuzzy concepts and incomplete,
The first three are closed world models and
the fourth is an open world model.

2. A closed world model is one where
every possibility has been identified. An
open world model is one where it is recog-
nized that there may be some possibilities
which have not been identified. :

3. A measure of degree of dependence
bounded on the interval (0, 1) has been de-
fined. )

4. A theory of Interval Probability has
been introduced and suggested as a rela-
tively simple and robust theory for practi-
cal computation.

5. Three problems with the theory of fuzzy
sets have been discussed. They are concerned
with the philosophical basis, the choice of
sample space and the choice of calculus. .
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